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Abstract— Recently, Wang proposed a new method to cryptanalyze SHA-1 and found
collisions of 58-round SHA-1. However many details of Wang’s attack are still unpublished,
especially, 1) How to find differential paths? 2) How to modify messages properly? For the
first issue, some results have already been reported. In our article, we clarify the second
issue and give a sophisticated method based on Grébner basis techniques. We propose
two algorithm based on the basic and an improved message modification techniques re-
spectively. The complexity of our algorithm to find a collision for 58-round SHA-1 based
on the basic message modification is 22° message modifications and its implementation is
equivalent to 23! SHA-1 computation experimentally, whereas Wang’s method needs 234
SHA-1 computation. The proposed improved message modification is applied to construct
a more sophisticated algorithm to find a collision. The complexity to find a collision for
58-round SHA-1 based on this improved message modification technique is 2% message
modifications, but our latest implementation is very slow, equivalent to 23! SHA-1 com-
putation experimentally. However we conjecture that our algorithm can be improved by
techniques of error correcting code and Grobner basis. By using our methods, we have
found many collisions for 58-round SHA-1.
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1 Introduction

MD4 is a first dedicated hash function pro-
posed by R. Rivest in 1990, and MD5 was pro-
posed as an improved version of MD4 in 1991
also by R. Rivest. Following the same design
paradigm, SHA-0 was published by NIST in
1993 and SHA-1 was issued by NIST in 1995
as a Federal Information Processing Standard.
SHA-2 was also proposed by NIST as an im-
proved version of SHA-1 where the length of
hash results are 256, 384, 512.

In the first cryptanalysis of these algorithms,
Dobbertin [1] has found semi-free start colli-
sion of MD5. Later on, Wang [5], [6] has pro-
posed collision attack on SHA-0 whose com-
plexity was estimated to be as 24> SHA-0 com-
putation. Chabaud-Joux [12] independently
found differential collision attack against SHA-
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0 using essentially the same pattern. Intro-
ducing a new approach based on the neutral
bit, near-collisions and multi-collisions, for SHA-
0 and reduced SHA-1 have been reported in
[10], [11], [9].

Employing the modular differential attack
and message modification technique, Wang [4]
has found collisions for the following hash func-
tions MD4, MD5, HAVAL-128, RIPEMD, and
in [7], [8], it is proposed how to break MD4,
RIPEMD, MD5 and other hash functions, with
the attack complexity against MD4 and MD5
proportional to 2% and 237, respectively. In
[14] and [15], efficient collision search attacks
against SHA-0 and 58-round SHA-1 have been
reported as well as a complexity evaluation
against full SHA-1 claimed to be 2% SHA-1
computation and in the improved approach to
be 263,

In this article, we give a sophisticated method
to analyze SHA-1. Our method is based on
the Gaussian elimination and Grébner basis
techniques. Our key ideas are to view a set of
sufficient conditions as a system of equations
of boolean functions and to consider message
modifications as error-correcting procedures
for non-linear codes. For 58-round SHA-1, the
complexity of our algorithm using only a basic
message modification technique to find a col-
lision is 229 message modifications (equivalent



e Find disturbance vector with low Ham-

round Boolean function f; constant k;
1-20 | IF: (zAy)V(-zAz) 0x5a827999
21—-40 | XOR:xdyd 2 Ozbedbebal
41 —-60 | MAJ: (x Ay)A(xzVz)A(yVz) | 0z8fabbede
61—80 | XOR:xdy @z 0zca62cld6

ming weight (difference for subtractions
modulo 23?).

e Construct differential paths by specify-

Table 1: Definition of function f;

to 23! SHA-1 computation experimentally),
whereas Wang’s method needs 234 SHA-1 com-
putation. We propose an improved algorithm
using improved message modification whose
complexity to find a collision for 58-round SHA-
1 is 28 message modifications, but our latest
implementation is very slow, equivalent to 23!
SHA-1 computation experimentally. However
we conjecture that our algorithm can be im-
proved by techniques of error correcting code
and Grobner basis. By using our methods, we
have found many collisions for 58-round SHA-
1 which are different from Wang’s result.

2 Description of SHA-1 and Wang’s
analysis

2.1 SHA-1 algorithm

The hash function SHA-1 generates 160-
bit hash result from message of length less
than 264 bits. It has Merkle/Damgard struc-
ture like other hash functions, and has 160-bit
chaining value and 512-bit message block, and
initial chaining values (IV) are fixed. From
512-bit block of the padded message, SHA-1
divides it into 16x32-bit words (mq, my,- - ,m15)
and expands the message by

m; = (m;—3®m;_g®m;_14Dm;_15) K 1

fori =16,---,79, where x <€ n denotes n-bit
left rotation of z. Using expanded messages,
fori=0,1,---,79,

ai+1 = (a; < 5)+fi(bi, ci, di)+ei+mi+kip,

bip1 = ai, Ciy1 = by < 30, dip1 = ¢i, €i11 = d;

where initial chaining value IV = (ag, bo, co, do, €o)

is (0267452301, Oze fcdab89, 0x98badc fe, 0210325476,
0xzc3d2el f0) and function f; is defined as in

Table 1. In the following, we express 32-bit

words as hexadecimal numbers.

2.2 Wang’s attack

Wang’s attack is summarized as follows.

ing conditions so that the differential
path will occur with high probabilities.

e Generate a message randomly, modify it
using message modification techniques,
and find a collision.

By this method, Wang et al. has succeeded
in finding collisions of MD4, MD5, RIPEMD,
SHA-0 and 58-round SHA-1.

In the case of full-round SHA-1, Wang’s at-
tack need to use two iteration. They found
collision with two iteration, i.e. each message
in the collision includes two message blocks
(1024-bit). They gives a set of sufficient con-
ditions so that the differential occurs. Use a
message modification technique they greatly
improve the collision probability. In [15], they
claimed that complexity to find a collision of
full-round SHA-1 is 2%9 and in CRYPTO’05
Rump Session, they claimed that they have
improved complexity into 2%3. In the Rump
Session, they claimed that they found new
collision path of SHA-1 and described strate-
gies for message modification. This strategy
is: First they determine which message bits
are possible candidates for modification. The
message modification process must respect all
chaining variable conditions and message con-
ditions may require adding extra chaining vari-
able conditions in round 1-16 and message
conditions. Message modification follow cer-
tain topological order coming from correla-
tions among chaining variable conditions.

Despite they have proposed new method,
many details are still unpublished. Not all
information are published about their attack,
especially, 1) How to find differential paths?
2) How to modify messages properly?

In our analysis, we shall clarify and improve
the second issue in the above, and show the
effectiveness of our approach via computer ex-
periment.

3 Definition and Notation

We take a complete set of representatives of
7.)2%7 as {0,1,2,...,232 — 1}. So we identi-
fies the ring Z/2327Z as the set {0, 1,2, ...,2%2—
1}. When we ignore carry effects in the arith-
metic of Z/2327Z, we consider the ring Z/2%?7Z



as the vector space F32 by using a set theoret-
ical identification mapping

FgQ B (l‘o, L1y -- ,.1?31) = 1‘02314-.1312304-- st
333021 + 333120 € Z/23QZ.

Definition 1 Let m = (mg,my,...,m31), m' =
(my,m},...,mhy) be vectors of F32. For a
pair m and m', we define the following no-
tation.

A*m, = L ifm;=1andm; =0
0 otherwise,

A=m, — {1 zfm; :'O and mj =1
0 otherwise,

We define A*m; by A*m; = Atm; @A~ m;.

Moreover, we define

A"'m = (A+m0, A+m1, cee ,A+m31),

A ~m = (Aimo, A’ml, ey Aimgl)

and A*m = Atm @ A~ m.

It is obvious that A*m; = m/ +m; € F,
and ATm =m/ +m € F32.

Using the above definition, a “disturbance
vector” and a “differential without carry” are
defined as follows.

Definition 2 Let m;, a;, b;, c;,d;,e; be as in
the definition of SHA-1 and m/, al, b}, c}, d;, e}
another message and its variables. They can
be considered as vectors of F32. Then, follow-

ing Wang’s notation, we call a vector in the

form (AEmy, A*a;, A*b;, A*e;, A*d;, A*e;)i—o1,... 79

a “disturbance vector”, and

(Aeri, Afmi, AJrai, A*ai, e AJrei, Aiei)i:0’1’my79

a “differential without carry”.

Since a disturbance vector ignores the sign
‘+’, there are many different vectors
(A*tm; j, A~m, j,...) corresponding to the same
disturbance vector. So, the choice of a repre-
sentative (ATm; j, A"m; ;,...), that is, the
choice of a differential without carry is im-
portant in an analysis of SHA-1.

It is convenient to use the following defini-
tion to consider the ambiguity of the choice of
a differential without carry.

Definition 3 For a message space M = 7./23?7,
we define function f : (MxM) — M : (x1,z2) —
(1 — z2) where we consider '—' as subtrac-
tion of Z/2*?7. We define differential 6M by
OM = (M x M)/ ~ where for dmq,dms €
OM, dmy ~ dmsy is satisfied if and only if
F(6ma) = £(ma).

Proposition 1 0M = M

Proof This is obvious from the definition of
oM.

We define operator + in § M as follows. For
dmy = (mf,my) € 6M, dma = (m3,my) €
oM,

5m1+5m2:(mf+m;,mf+m2_)

Same as the case of disturbance vectors, a
choice of a representative (m,m’) for a given
class dm is very important. When dm is given
as a part of a disturbance vector, we call a
representative (m,m’) for it a “message dif-
ferential”. The important problem is to find
a good message differential. Heuristically, a
good message differential has low Hamming
weight. To find such good message differen-
tial, we use the following calculation.

e Calculate dm3 = (md,mz) = dmy +
dma = (m] +m3,my +my).

e Cancel the bit of (md,m3): If m;j =
mg ; = 1, change m:;j =mg; =0.

We define operator — in § M as follows. For
dmy = (m},my), dma = (m3,m3 ),

6m1—5m2:(mf+m5,mf +m§r)

In calculation, we also use the steps given
below.

e Calculate dmg = (mz,mg) = dmy —
Omg = (m +my,m; +my)

e Cancel the bit of (md,m3): If m;{j =

- _ + o =
mg ; =1, change m3 ; = mg ; = 0.

In order to check whether dm; = dmso or
not, we only have to calculate dm; — dmsy and
check omy — dmz = (0,0).

4 QOur method

Our method to cryptanalyze for SHA-1 is
as follows.

1. Find disturbance vector with low Ham-
ming weight from 21-round to final round
(in Wang’s example of SHA-1, 58 or 80-
round). In this calculation we approxi-
mate MAJ function as XOR which holds
with probability 3/4 per round.



2. From first round to 20-round, find differ-
ential (difference for subtractions mod-
ulo 23%) so that da_4(= deg K 2), da_3(=
5d0 K 2), 5a_2( 560 S 2), 5a_1(:
dby), dag is a local collision. We ignore
carry effects here.

3. Calculate sufficient conditions on {a;}i=0.1,....20
considering carry effect by our semi-automatic

method.

4. Determine advanced sufficient conditions
on m; by the Gaussian elimination based
method.

5. Determine our advanced sufficient con-
ditions. (Obtained conditions are essen-
tially Wang’s sufficient conditions com-
bined with information for message mod-
ification technique.)

6. Generate a message randomly, and mod-
ify it using message modification tech-
niques and find collisions.

In the above, Step 4, 5 and 6 are based on
our new idea. In Step 4, we use the Gaussian
elimination and in Step 5, we use an idea from
Grobner basis techniques. A method used in
Step 6 is based on an idea analogous to error-
correcting for non-linear codes. The method
of Step 1 and 2 is based on the essentially
same idea of Wang’s attack. So we omit the
details of Step 1 and 2 and only describe steps
after from Step 3.

4.1 Sufficient conditions for collisions

For a given disturbance vector (or a given
differential without carry) we can determine
sufficient conditions for collisions on m; and a;
such that if m/ (and a) satisfies these condi-
tions, we can obtain a pair of messages whose
differential coincides with a disturbance vec-
tor and gives a SHA-1 collision. By the con-
struction, sufficient conditions depend on a
choice of a disturbance vector and its differ-
ential without carry.

4.2 How to calculate sufficient condi-
tions on a;7

In this step, we may only consider expanded
messages by ignoring relations arising from
message expansion.

For a given disturbance vector, we calculate
sufficient conditions of chaining variables by

adjusting b;, ¢;, d; so that
6f(z, b;, ci, dl) = 6ai+1—(5ai XK 5)—§ei—§mi.

In this calculation, we must adjust carry ef-
fects by hand. Although it is difficult to cal-
culate full-automatically, our method is semi-
automatic one.

4.3 Gaussian elimination and advanced
sufficient conditions

Here we consider to analyze n-round SHA-1
(58 < n < 80). In order to calculate the suf-
ficient condition on {mi7j}i=0717... ,n;5=0,1,...,31,
we must take into account that Atm,; ; =1
implies m;; = 0 and A™m;; = 1 implies
m; ; = 1. This is done manually.

Moreover we also consider the relations de-
rived from the key expansion

m; = (Mi—3 ®m;_s ®mi_14Bm;_16) <K 1

and we can rewrite all conditions on 0 — 58-
round by relations of 0 — 15-round using the
Gaussian elimination. Here all relations are
considered as equations over Fy and an elim-
ination order of {m; ;}i=o,1,...,15;j=0,1,..,31 i8
given by

my o <myjif i’ <ior (i’ =iand j' < j).

Execute the Gaussian elimination for the sys-
tem of equations which consists of all condi-
tions on 0 — 58 round, we obtain a reduced
conditions only on 0 — 15-round.

The important thing is that m;; can be
viewed as a polynomial on ay, (k < i+ 1),
because m; ; can be viewed as a boolean func-
tion on ax, (k < i+ 1) by the definition of
SHA-1. So it is useful to consider an elim-
ination order of {a;;}. We can consider an
elimination order of {a; ;}i—01,...,15;j=0,1,...,31
by

a o < aigifi <idor (i =iand j" < j).

These two orders are different but approxi-
mately similar because transformation between
them is not so complicated.

Experimentally, the best choice of the or-
der is combination of these two orders. Here-
after, we adopt the order of {a;;} when i =
0,1,15,16, and the order of {m; ;} when 1 <
i < 15. By using the Gaussian elimination
with this order, we reduced a system of equa-
tions consists of original sufficient conditions



to a reduced row echelon form. Then in spite
of original sufficient conditions, we use the ob-
tained system of equations in reduced row ech-
elon form as new sufficient conditions. We call
them advanced sufficient conditions. On the
other hand, for conditions on {a;;}, we con-
struct advanced sufficient conditions by adding
the information on “control bits” defined in
the next section to original sufficient condi-
tions.

4.4 Message modification techniques of
my
In our procedure we use technique of modi-
fying {a; ;} instead of {m, ;}. We note that in
[6] and [5], this technique has been explained
but not in detail.
When (ag, bo, co,do, eo) is fixed, it is clear

that (mg,mq,- - ,m15) corresponds to (a1, ag, - - -

bijectively, which implies that modification of
{a; ;} is theoretically equivalent to modifica-
tion of {m; ;} in the case of SHA-1.

To find a collision, we start from a random
message and then modify it to satisfy suffi-
cient conditions. Message modification tech-
nique is used to find a collision for the first 23
rounds.

First we compile a list of controlled rela-
tions and control bits associated to first 23-
rounds. The set of controlled relations con-
sists of advanced sufficient conditions contain-
ing {m;;} and {a;;}, (¢ =0,1,...,15; j =
0,1,...,31). Control bits are determined for
each controlled relation. Control bits are cho-
sen among a;; which appears in a leading
term or a term 'near’ leading term in m; j,
where m; ; is considered as a boolean func-
tion on a; ;’s.

If a controlled relation is not satisfied by
a current message, we adjust the message by
changing values of control bits associated to
the controlled relation. In the list, controlled
relations are listed following the elimination
order used in the Gaussian elimination. Each
controlled relation with control bits associ-
ated to it is labeled by s; where ¢ denotes the
order in the list.

By using the above setting, a basic proce-
dure for the message modification is given as
follows.

Algorithm 1 (Basic Message Modification)
Procedures for message modification: Preset
the maximal number of trials M .

aalﬁ)

1. Setr =0.

Generate (a1,a2,- -+ ,a16) randomly.

Seti=0.

Increment i until the controlled relation
r; of s; is not satisfied. If all relations
are satisfied go to final step. If r > M,
give up and return to Step 2.

5. Adjust control bits a; ; of s; so that cor-
responding controlled relation and suf-
ficient condition on {a;;} hold. After
adjusting, set i = 0 and r =r + 1 and
go to Step 3 and repeat the process until
all controlled relations hold.

6. If all controlled relations are satisfied,
check whether modified message yields
collision or mot. If it does not generate
collision, return to Step 2. If it gener-
ates collision, finish.

The most important issue is that changing
the control bit a; ; may effect the controlled
relation 7 (k < %) of previous step. In such
situation, we have to go back to ¢ = k and
correct controlled relations again.

By the proposed method, we can modify a
message so that all sufficient conditions on the
message {m; ; } and all sufficient conditions on
the chaining variable {a;;} of first 23 rounds
hold.

As we show later, Algorithm 1 improves the
complexity of attack on 58-round SHA-1 com-
paring to Wang’s method, but we need further
improvement. In the following sections, we
propose a more effective algorithm.

4.5 Neutral bit, semi-neutral bit and
adjuster

By using semi-neutral bits defined below,
we can make Algorithm 1 more efficient.

Assume that message conditions and some
chaining variable conditions are satisfied. If
changing some bit of chaining variable does
not affect these conditions, the bit is called
a neutral bit, following Wang’s terminology.
To adjust a message to satisfy remaining con-
ditions, it is useful to use neutral bits. But
in the case of SHA-1, there are not enough
neutral bits. Here we introduce a notion of
semi-neutral bits, a generalization of neutral
bits. Assume again that message conditions



and some chaining variable conditions are sat-
isfied. If an effect of changing a bit of chain-
ing variable can be easily eliminated so that
all conditions previously satisfied are satisfied,
we call the bit as a semi-neutral bit. Effects of
changing semi-neutral bits can be eliminated
by controlling a little number of bits. We call
such bit an adjuster.

4.6 Improved algorithm to find colli-
sions of SHA-1

Using semi-neutral bits and adjusters, we
construct a more efficient algorithm to find
collisions of SHA-1.

A new procedure to find collisions of SHA-1
is as follows.

Algorithm 2 (Improved Message Modifica-
tion) Procedures for message:

1. Generate (a1,as,: - ,a16) randomly.

2. Using the basic message modification de-
scribed in Algorithm 1, modify (a1, as, - - -
so that all message conditions and some
chaining variable conditions from the 17-
th round to the 23-rd round hold. If this
step fails, return to Step 1.

3. If remaining changing variable conditions
from the 17-th round to the 25-th round
are not satisfied, return to Step 1 and
repair until all conditions are satisfied
(It can be satisfied probabilistically).

4. Change values of semi-neutral bits and
modify chaining variables using our con-
trol sequence, and check whether chain-
ing variable conditions from the 24-th
round to the final round are satisfied.

5. Repeat all procedure above until all chain-
ing variable conditions are satisfied.

Remark 1 (1) In round 17-23, there are un-
controlled relations. In the case of our ex-
periment on 58-round SHA-1(see Section 6),
there are 5 uncontrolled relations. So, in Al-
gorithm 2, the probability that output of Step
2 pass the test in Step 3 is 1/25.

(2) As we show in Section 6, in the case of
our experiment on 58-round SHA-1, we use
21 semi-neutral bits and 16 adjusters.

The above proposed algorithm is based on
our idea that message modification is anal-
ogous to error-correcting procedure for non-
linear codes. (See the next section for more

7a16)

details.) For Step 4 in Algorithm 2, we take a
naive trial-and-error method in our latest im-
plementation. We think that if we assemble a
list of relations and their control bits for after
the 23-rd round, and if we use more techniques
from Grobner basis and error-correcting codes,
we can make our algorithm more effective.

5 Algebraic Description of Mes-
sage Modification and the Re-
lation to Error-Correcting Codes

Here we give another point of view which
may be useful for further improvements.

5.1 Algebraic Description of message
modification.

We can explain Algorithm 2 in terms of ide-
als of a polynomial ring and Grébner basis.
Here we consider n-round SHA-1 (58 < n <
80).

Let F3[X] be a polynomial ring over Fo with

variables X; ;,7=0,1,...,nandj =0,1,...,31.

Let J be an ideal in [F3[X] generated by {ij—f—
Xijti=01,...,n5=0,1,....31 and R a quotient ring
Fy[X]/J. Note that R represents the set of
all boolean functions with variables X ;, ¢ =
0,1,...,nand j = 0,1,...,31. For the sim-
plicity of notation, we write an element in R
as f(X).

For a randomly taken (a1,aq,- - ,a16) €
(F34)', a = {ai;}i=01,..,nij=0,1,...,31 are de-
termined. We associate this a to the ideal in R
generated by {X;; + a;j}ti=0,1,..n;j=0,1,...31-
controlled relations are polynomials in a; ;’s
and m; ;’s. Since m; ; is determined by a; ;’s,
we may consider those relations as functions
on a; ;'s. Moreover, since controlled relations
are equations via boolean functions, they can
be expressed as polynomials on a; ;’s. So by
replacing a; ; by the variable X; ;, we may
consider controlled relations are equations in
the form f({X;,;}) = 0 where f € R. Put
9i,; = Xij+a;; for each 7, j, let I be an ideal
generated by g; ;’s and let (f1, f2,...) an or-
dered set of polynomials associated to the list
of controlled relations. controlled relation and
control bits in the list are replaced by f;’s and
gi,j- We call f; a control equation and we call
gi,; corresponding a control bit a control poly-
nomial.

Let T := {f;} be the set of all conditions
in a table of advanced sufficient conditions on
which changing semi-neutral bits affect. Let



N Dbe the set of all semi-neutral bits and ad-
justers. Put P := {(4,j) | a;; € N} and let
I5 be the ideal generated by all polynomials
9i,5 = X@j + ;5 for (Z,j) g P and let R2 a
quotient ring R/I>. For each f; in T, let f;
be an equation f; mod I3 and let 7 a system
of equations which consists of all fj

Then, Algorithm 2 is described as follows.

Algorithm 3 Procedures for message modi-
fication: Preset the maximal number of trials
M.

1. Setr=0.

2. Generate (a1, az, - ,ais) € (F32)16 ran-
domly.

3. Seti=0.

4. Increment i until f; 20 mod I. If all
fi are contained in I, go to the final
step. If r > M, give up and return to
Step 2.

5. For control polynomials {g;,;} associated
to fi, replace appropriate g;1(X;:) by

95, 1(X;1+1) in I to satisfy f; =0 mod I.

After adjusting, set r =r +1 and go to
Step 3.

6. Solve a system of equations T in Rs by
using Gréobner basis algorithm.

7. Check whether modified message yields
collision or not. If it does not generate
collision, return to Step 2. If it gener-
ates collision, finish.

We remark that in a system of polynomial
equation considered in Step 6 in the above al-
gorithm, most of equations coming from con-
trolled relations are trivial, that is, f; = 0 in
Rs.

5.2 Relation between message modifi-

cation and decoding of error-correcting

codes.
Let S be the set of all points in F' = (F3?) 10

satisfying advanced sufficient conditions on {a; ; }.

Note that S is a non-linear subset of F' be-
cause there are non-linear conditions. Then,
for a given a € F which is not necessarily
contained in S, to find an element in S by

modifying a is analogous to a decoding prob-
lem in error-correcting codes. Hence, a ba-
sic message modification and a proposed im-
proved message modification including chang-
ing semi-neutral bits can be viewed as an error-
correcting process for a non-linear code S in
F. More precisely, for a non-linear code S in
F, an error-correction can be achieved by ma-
nipulating control bits and semi-neutral bits.

6 Analysis of 58-round SHA-1 based

on our method

Now we show the effectiveness of our method
by analyzing 58-round SHA-1.

6.1 Disturbance vector and Message dif-
ferential pattern

We start from the disturbance vector which
is the same as the one Wang gave. (Of course,
our method is applicable to other disturbance
vectors.) Then we construct differential with-
out carry associated to the disturbance vector.
Constructed one is the same one as Wang ob-
tained in [15]. Explicit form of the differential
without carry is as in Table 6.1.

We take {(A"'mi, A‘mi)}i=071727...,57 as a
message-differential. It is a message-differential
without continuous 5-bits.

6.2 Sufficient conditions on {m;} and
{as}

For the disturbance vector, the differential
without carry and the message differential given
in the previous step, we give sufficient condi-
tions on 58-round SHA-1. Since it is not writ-
ten in [15], conditions we give here in Table 3
is the first one which is written in an explicit
form.

In Table 3, ’a’ means a; ; = a;—1,j, ‘A’ means

— H —
aij = a;j—1,j+1,’b’means a; j = d;_1,(j+2 mod 32)

'B’ means a; ; = Gj—1,(j+2 mod 32)+1, ¢’ means
Qi j = Qi_3 (j+2 mod 32) and 'C’ means a; ; =
@;—2,(j+2 mod 32) T 1.

By the Gaussian elimination, we rewrite all
conditions on 0 — 57-round by relations of 0 —
15-round. An elimination order of
{mi;}i=01,..,15;j=0,1,...31 We use here is

my o < myjif i’ <ior (i =i and j’ < j).

The result of Gaussian elimination is as fol-
lows.
mi531 = 1,mi530 = 1,m1529 = 0,m1528 +



i Atm; A" my Ata A~ aj
58 1 0 0 0
57 0 0 0 0
56 0 0 0 0
55 0 0 0 0
54 0 0 0 0
53 0 0 0 0
52 0 0 0 0
51 0 0 0 0
50 0 0 0 0
49 0 0 0 0
48 0 0 0 0
47 | 80000000 0 0 0
46 0 80000000 0 0
45 0 0 0 0
44 0 80000002 0 0
43 0 40 2 0
42 0 80000000 0 0
41 0 40 2 0
40 0 80000000 0 0
39 | 80000000 40 2 0
38 0 0 0 0
37 40 80000000 0 2
36 0 80000002 0 0
35 | 80000000 0 0 0
34 | 80000000 2 0 0
33 40 0 0 2
32 0 2 0 0
31 2 40000000 0 0
30 | 40000002 40 2 0
29 2 40000040 2 0
28 1 80000000 0 0
27 42 40000020 0 1
26 | 40000041 80000002 0 2
25 0 40000002 0 0
24 1 0 0 0
23 2 0000020 1 0
22 | 80000041 40000002 0 2
21 | 40000040 2 0 2
20 0 3 0 0
19 | 40000000 22 1 0
18 | c0000002 41 2 0
17 | 40000002 40 2 0
16 | 80000001 0 0 0
15 | 20000000 60 1 0
14 | 20000001 0 0 0
13 | 80000040 0 0 2
12 0 a0000000 0 0
11 | 40000000 20000052 102 80000000
10 | 40000040 0 0 0
9 40000040 12 8003££00 40002
8 3 0 1£e0000 2000000
7 0 20 209 100180
6 80000001 0 1008000 4000
5 0 60000002 10100600 08080801
4 €0000040 2 8012 4024
3 20000000 40 201 0
2 20000000 40000043 80000014 60000002
1 40000020 20000012 40000000 20000000
0 20000000 0 0 0

Table 2: {m;} and {a;} of differential without
carry of 58-round SHA-1

message
variable

mq

™y

—=01-—-1-

mo

ms3

—1-——-11

my

mg

meg

my

m

mg

mi19

myy

mio

mi3

migq

mys

mie

mi7

mq

mig

ma0

moy

mao

mos3

mog

mog

mog

mat

mog

m29

ms3g

m31

ms3o

ms3s3

m3q

ms3s

m36

msy

=lelolo

ms3

ms3g

m40

myy

myo

mag3

myq

mys

mye

ma7

m, (i > 48)

chaining
variable

31 - 24

23 - 16

15 - 8

8-0

ag

01100111

01000101

00100011

00000001

ay

-1-al0aa

ag

01100---

_ —0-

1--00010

a3

0010----

-10---1a

0a-1a0-0

ay

11010---

Olaaa---

0-10-100

as

10-0la--

-1-01-aa

--00100-

ag

11--0110

-a-1001-

01100010

az

-1--1110

alallll-

-101-001

ag

-10

00000002

a00lal--

a9

11000100

00000000

210

11111011

11100000

a1l

ai2

01111110

ai13

a14

ai1s5

a16

ai7

ais

a19

a20

a21

a2

a23

a24

a5

a26

ag7

a28

a29

230

a31

a3o

a33

a3q

as3s

a36

as37

a38

a39

a40

aq1

a42

a43

a44

aq4s

a; (1 > 46)

Table 3:

{a; ;} of 58-round SHA-1

Sufficient condition on {m,;} and




M10,28 18 20+M7 29+M4 28+M2 28 = 1, M5 27+

mi4,25 + M12,28 + M12,26 + M1g,28 + Mo 27 +
Mg, 25 +Mg 29 +1Mg 28 + M7 28 +M7 27 + M6 26 +
mMs5,28 My ,26 +1M3,25 +M2 28 +M1 25 +Mp,28 =
1,m15,26 + M10,28 + M10,26 + Mg 28 + Mg 27 +
m7 27 +Mg,29 + M5 27 + My 26 +M2 27 + M2 26+
mo,27 = 1, m1525 +m11,28 +M10,27 +M1o,25 +
Mg, 28 +Mg 27 +1Mg 26 + M7 26 + Mg 29 + M6 28 +
mMs5,26 +M4,25 + M3 28 + M2 28 + M2 26 +M2 25 +
my 28 + Mo,28 + mo,26 = 0,M1524 + M12,28 +
mi1,27 + M1o,26 + M10,24 + Mg 28 + Mg 27 +
mg, 29 + Mg 26 +1Mg 25 + M7 25+ Mg 29 + Mg 28 +
me,27 + M5 25 + Mg 28 + M4 24 +M3 28 + M3 27+
M2 27 +M2 25 +M2 24 +M1 28 +M1 27 +Mp 27+
mo,25 = 1, 15,23 +mM12,28 +M12,27 +mM11,26 +
m10,25+M10,23+M9,27+Mg 26 +1M8g 28 +Mg 25+
mg, 24 + M7 29 +M7 24 + Mg 28 + Mg 27 + Mg 26 +
Mg 24 + My 27 +1Myg 23 +M3 27 +M3 26 + M2 26+
M2 24 +M2 23+M1 27 +M1,26+M0,26 +M0,24 =
1,m15,22 +mM14,25 +M12,28 +M12,27 +M11,25 +
mio,27 + M10,24 + Mio,22 + Mg 28 + My 27 +
mg, 26 + Mg 27 +1Mg 24 Mg 23 +M7 28 +M7 27+
m7 23+ Mg 27 + Mg, 25 + M5 23+ M4 28 + 1My 27+
My 22 +M3 26+ M2 28 +M2 27 +M2 25 +M2 23+
Mo 22 + M1 26 + Mo,25 + Mo,23 = 0,M156 =
1,mis5 = 1,mi54 + Mi25 + Mio,a + Mas +
My a+mes+ma g = 1,m153+mi22+mio2+
mg3 + mr3 + myo + Mms3 + My + M34 +
mso+MmMa3+mao+mia+mes=0,ms2+
Mmi2,5 + M11,5 +Mio,4 +M10,2 +Mg 4+ Mg 3+
my7.3+Ms 5+ms53+My 5+Mg2+Mao 5+mM2 3+
mo o+mo3 = 1,m151+mi25+mi1,3+mi1 2+
mio,4 + Mio,2 + Mo 2 +mg3+mgao+ M54+
My 5+My4 4+M40+M3,31+M3 4+M3 2+M2 5+
ma4+ma3+mi31+mo3z =0,mi50+mio=
1,mi431 = 0,m1430 = 1,m14,29 = 0,m14 28 +
Mg 28 + Me,29 + M3 28 + mi28 = 0,Mm14,27 +
mi2,28+Mg 27 +M7 29+Mg 28 1My 28 +M3 27+
my 27 = 0,m14,26 + mM12,27 + M10,28 + Mg 28 +
M9, 26 + M7 28 + Mg 27 +1My, 28 + My 27 +M3 26 +
M2 28 +mM1,26 = 1, M14,24 +M12,27 +M12,25 +
mi1,28 + M10,27 + M10,26 + M9,26 + M9,24 +
mg, 29 + M7 26 + Mg, 29 + Mg 25 + M5 28 + 114 28 +
M4,26 + M4 25 +M3 28 +1M3 24 +M2 26 +1M1 24+
mo,28 = 0, m14,23 +mM12,26 +M12,24 +m11,27 +
m10,26+M10,25 M9 28+M9 25+1M9 23+Mg 28+
My7,25 +Me 28 +M6,24 + M5 27 + My 27+ Mg 25+
My, 24 +M3 28 +M3 27 +M3 23+ M2 25 +M1 28+
my,23 +Mo27 = 1,M14,22 +M1320 + M12,25 +
mi2,24 + Mi2,23 + M11,28 + M11,23 +M11,21 +
mi0,27 +Mg 26+ Mg 24+Mg 23 +Mg 29+Mg 27+
ms 26 +Msg 25 +Msg 22+ Mg 20 + M7 26 + M7 25+
me,20 + Mg 23 +M6,22 + M5 28 + M5 25 +M5 21 +
My, 28 + My 26 + Mg 25 + M4 23 +M3 28 +M3 24+

ms3 21 +M2 26 +M2 20+ M1 24+Mg28+Mp,25+
mo,20 = 1, 14,21 +mM1227 +M12,24 +mMmi222+
mi1,25 + M10,28 + M1o,27 + Mi0,24 + M10,23 +
Mg, 28 + Mg 26 + Mg 23 + Mg 21 + Mg 290+ Mg 26 +
M7,29 +M7 28 + M7 23 +Mg 29 + Mg 26 Mg, 22 +
ms, 25+ M4 28 +1Myg 27 + M4 25 +Myg 23+ 1My 220+
ms3 26 +MmM3,25 +M3 21 + M2 28 +M2 23 +M1 26+
my,21 +Mo,25 = 0,M14,20 + M12,26 + M12,23 +
Mi12,21 + M11,28 + M11,24 + M10,28 + M1o,27 +
m10,26 + M10,23 + M10,22 + M9,27 + Mo 25 +
mg, 22 + Mg 20 +1Mg 28 + Mg 25 +M7 28 + M7 27+
m7 22+ Mg 29 + Mg 28 + Mg 25 + Mg 21 + M5 24 +
My, 27 + My 26 +1Mg 24+ M4 22 +My 21 +M3 28+
m3,25 +M3 24 +M3,20 +M2 27 +M2 220 +M1 25+
™m1,20 + Mo,28 + Mo,24 + Mar31 = 1,mias +
mg 5+mes = 1, M1 4+mi25+mi1,3+mii 2+
mio,4 + M10,3 + M1p,2 + Mig,1 +Mg2+mgs+
mr72 + Mes5 + Mea + M5 a + M52 + My 5 +
My,4 + Mygo + M3 31 +M34 +Mm32+ Mmas+
mo,3 + Moo + M1.31 + Mo,a + Mo,3 + Mo,2 =
1,mis3+mi1,3+mi12+mga+mra+my 2+
mz 1+Meg 2+Ms5 3+My4,0+mM3,3+M22+m1 31+
my3 = 0,m1g2+mi25+mi23+miga+mg 2+
Mmr4 + Me3 + Mas + Mag + Mmy3+ m32+
mo5+mo4+my2 = 1,mig1+miza+mi1o+
mio,2 + Mg 3+ mg3+ mya+ mga+ mss+
ms2 + Mg 4 + M3 31 + M3 4a + m3o + ms31 +
mo 4 +mo3+mp3 = 0,miso = 0,m1331 =
0,m1330 = 0,Mm1329 + mg29 = 0,m1328 +
mg 28 + Ma,28 + mo,28 = 0,m13 27 + m11,28 +
mg,29 +Mg 27 +1Mg,29 + M5 28 + M3 28 +M2 27+
mo,27 = 1,M13 26 + M11,27 + Mo 28 + Mg 28 +
mg 26+ Mg 28 + M5 27 + M3 28 +M3 27 + M2 26 +
my,28 +Mo26 = 1,M13,24 +M12,28 +M11,27 +
mi1,25+M10,28 +Mo 27+M9 26+1Mg 20+Mg 26+
mg,24 +M7 29+ M7 28 +Mg 26 +M5,25 M4, 28 +
m3,28 + M3 26 +M3,25 +M2,28 + M2 24+mM1 28+
my,26 +Mo,24 = 0,M13,23 + M12,27 +M11,26 +
mi1,24 + Mio,28 + Mio,27 + Mg 26 + Mg 25 +
mg,29 +Mg 28 + Mg 25 +Mg 23 + M7 29 +M7 28+
M7 27 +Me 25+ M5 28 + M5 24 +1Myg 28 +My 27 +
m3,27 +M3 25 +M3,24+ M2 27 +M2 23+mM1 27+
my,25 + Mo,28 + Mo,23 = 0,M13 22 + Mm12.26 +
mi1,28 + Mi1,25 + M11,23 + M10,27 + M10,26 +
Mg, 28 + Mg 25 +1Mg 24 + Mg 28 +Mg 27 +1M§g 24 +
mg 22 +M7 28 +M7 27 + M7 26 + Mg 29+ M6 24+
mMs5,28 +Ms5 27 + M5 23 +My, 27 + 1My 26 +M3 28 +
ms3 26 +MmM3,24 +M3 23+ M2 28 +M2 26 + M2 22+
m1 26+m1,24+mMo 28 +mg,27+Mmo22 = 1, Mi36 =
0, m13,5+mi25+ms 5+mas+mes = 0,my3 4+
mi2,5 +M11,2 +M10,4 + M7y a4+ M54+ Mms53+
M52 + My5 + Mg a + M331 + Mas + Mg +
mo 2 +mi2 = 0,mi133+mg3+ms4+m3zq+
mo 3+mg3 = 0,m13,2+mi0,3+m10,2+m10,1+



mg 2+mg2+my4+myo+myo+mss+ms 3+
mg2 + Mo 3+ Mmoo+ M1 31 +my2+ Mo3 =
0,m13,1 +mi0,2 +mg 3 +mg3+mr4+mya+
me2 + Ms53 + M52 + Myo + M3 4+ m32 +
Mo 3+mz2+my 31+mo3 = 0,mi30+my31 =
1,mi231 = 1,m1230 = 0,m12290 = 1,M120 +
My + M3o + Mz +mio = 0,mi131 =
1,mi130 = 0,m1129 = 1,m116 = 1,m114 =
1,mi11 = 1,m110+m1 31 = 0,m10,31 = 0,m10,30 =
0,m10,20 = 0,m10,6 = 0,M105+mMa5+ma5 =
0,m10,0 + M4 + m1o = 0,Mmg 31 + Mm331 +
mgo+mi0=1,mg30=0,mg29 =1,mgg =
0, mg 5+mgs+mes+mss =0,mg s =1,mg 1 =
1,mg0+m30+mio0=0,mg31 =0,mg30 =
1,mg1 =0,mgo0=0,mr731 +m331 +mM131+
myo = 0,m730 =1, mr5 =1,myo+m3zo =
0,me31 = 0,me30 = 0,meo = 0,ms531 +
mg31 = 0,m530=1,m52 = 1,m51=1,m50+
mgo+mi,31 = 1,m4 31 = 0,m430 = 0,M4,29 =
0,map = 0,m41 = 1,m330 = 1,m329 =
0,m36 = 1,m231 = 0,Mm230 = 1,Mma29 =

0,ma6=1,m21 =1,m20=1,m130 =0,mq1 2 =
1,mis=0mi4=1my 1 =1,mo31 =0,mo30 =
0,mp,20 =0

From derived equations, we obtain advanced

sufficient conditions on {m; ;}.

6.3

We determine control bits and controlled
relations as in Table 4, and Table 5, where a
control sequence denotes a pair of a control
bit and a controlled relation.

Now we summarize our advanced sufficient
conditions on {m; ; }and {a; ; } by showing two
tables (Table 6) which illustrate advanced suf-
ficient conditions, controlled relations, control
bits and semi-neutral bits.

Symbols in Table 6 mean:

control bits and controlled relations

e 'a’ ’A’,’b’, 'B’, ’c’, ’C’: as in Section 6.2.

e 'L’ means that it is the leading term of
controlled relation of Table 4.

o 'w': adjust a; ; so that m;11,; =0.

e 'W: adjust a; ; so that m;11; = 1.

o v’ adjust a; j sothat m; ;127 mod 32) =
0.

e 'V': adjust a;,; so that m; (427 mod 32) =
1.

e 'h’: adjust a;; so that corresponding

controlled relation including m;41,; as
leading term holds.

message
variable

mq

™y

mo

ms3

my

mg

meg

my

m

mg

-0L1--1L

mi19

—OL--—-L

myy

-1-1--1L

mio

mi3

OLLLLL-L -OLLLLLL

migq

LLOLLL-L --LLLLLO

mys

LLOLLLLL -11LLLLL

mie

mi7

mq

mig

ma0

moy

mao

mos3

mog

mog

mog

mat

mog

0

m29

“1-——0-

ms3g

1-———0-

m31

ms3o

ms3s3

m3q

ms3s

m36

msy

ms3

ms3g

m40

myy

myo

mag3

myq

mys

mye

ma7

m, (i > 48)

chaining
variable

31 - 24 23 - 16 15 - 8 8-0

ag

01100111 01000101 00100011 00000001

ay

101V--vV ) -1-al0aa

ag

01100vVv

1-w00010

a3

0010--Vv 0aX1a0Wo

ay

11010vv- Olaaa--- 0W10-100

as

10wO1aV- -1-01-aa --00100- Ow--01W1

ag

11W-0110 -a-1001- 01100010 1-a11iWl

az

wix-1110 alallll- -101-001 1---0-10

ag

hOoXvvvio 00000002 a00lal-- 100X0-1h

a9

00XVrr-vV 11000100 00000000 101-1-1y

210

Owl-rv-v 11111011 11100000 00hWO-1h

a1l

1w0--V-V 01111110 11x---0Y

ai2

Owl-rV-V

-1XWa-Wh

ai13

s e — ~1-qq01y

a14

1rhhvvVh gNNNNNgN Nihhh1lhh

ai1s5

OrvhhhVh hhhh-—-N gNNggNQN NNhhOhhO

a16

Wiwhhhbh NNqNNqqq ___ qWWhahhh

ai7

-==-100-

ais

a19

a20

a21

a2

a23

a24

a5

a26

a7

a28

a29

230

a31

a3y

a33

azq

as3s

a36

as37

a38

a39

a40

aq1

a42

a43

a44

aq4s

a; (1 > 46)

Table 6:

’Advanced’ sufficient condition

{mi;} and {a;;}

on



Control Control Controlled relation r;
sequence bit
s4 b,

s124 216,7-915,9,914,9 a230 =0

123 16,9 ag2.2 faz12 =1

s122 216,13, 215,15, 915,12, 215,11 a22,1 =

s121 16,10 a21,3 + m20,3 =0

$120 16,8 a21,1 =1

s119 216,15, ¢16,20 20,3 +™m19,3 =1

S118 16,17 a19.0 =0

117 16,21 a18.31 =1

$116 216,19 a18,29 =1

$115 13,4 a182 =0

s114 13,3 a181 =0

$113 14,15 a17,30 =0

S112 16,31 mi15.31 =1

S111 216,29 mi15,29 =0

$110 216,28 m15,28 + m10,28 + mg 29 + ™m7,29 + My 28 + ma 28 =1

5109 a16,27, @13,28 m15,27 +mi14,25 + m12 28 + m12 26 + m10,28 + M9, 27 + mg 25 + mg 29 + mg 28
tmz7.28 + m7,27 + me,26 + ™m5,28 + m4q,26 + m3,25 + M2 28 + m1.25 + mp,28 =1

5108 16,26 m15,26 + ™m10,28 + ™m10,26 + ™8, 28 + mg 27 + m7,27 + mg,29 + m5 27 + Mg, 26
+m2.27 + ma.26 + mo.27 =1

$107 a16,25 m15,25 +m11,28 + m10,27 + m10,25 + m9 28 + mg 27 + mg 26 + M7, 26 + Mmg,29
+me,28 + m5.26 + m4.25 + m3 28 + M2 28 + ma 26 + ma.25 + m1,28 + ™Mmp,28 + ™Mmp,26 =0

5106 a16,24 m15,24 + m12,28 + m11,27 + m10,26 + m10,24 + Mg 28 + mg 27 + mg 29 + mg 26
+mg 25 + m7 25 + me 29 + mg 28 + me,27 + m5 25 + my 28 + My 24 + m3 28 + m3 27
+mog o7 + mg o5 + mg 94 + m1 08 +m1 27 + mg,27 + mg,25 = 1

$105 a16,23 m15,23 + mi12,28 + m12,27 + m11,26 + m10,25 + m10,23 + m9 27 + mg 26 + mg 28
+mg 25 + mg,24 + m7 29 + m7 24 + Mg, 28 + Mg, 27 + ™ME,26 T ™5,24 + M4 27 + M4 23
+m3 07 + m3 96 + M2 26 + M2 24 + Mo 23 + m1 97 + m1 26 + Mg 26 + Mmp.24 = 1

5104 a16,22 mi5,22 + mi14,25 + mi12,28 + m12 27 + m11,25 + m10,27 + m10,24 + m10,22 + M9 28
+mg, 27 + mg 26 + mg,27 + mg 24 + mg 23 + M7, 28 + m7 27 + M7 23 + Mg 27
+meg 25 + m5 23 + my 28 + my 27 + my 22 + m3 26 + m2,28 + m2 27 + m2 25
+m2,23 + ma.22 + m1.26 + mo,25 + mp,23 =0

$103 16,6 mi15.6 =1

$102 16,5 mi5,5 =1

$101 16,4 mi15,4 +m12.5 + M10,4 +t Ma5 + My 4t mas +mog =1

$100 a16,2 mi15,2 + m12,5 + m11,5 + m10,4 + m19,2 + mg 4 + mg 3 +m7 3+ ms5;5
+mg 3+ my 5+ my o+ moys+ mg g+ mo o+ mgg =1

S99 a16,1 m15,1 + mi12,5 + m11,3 F m11,2 T Mm10,4 + ™m10,2 + m9,2 + Mg 3 + mg,2
+m5 4 +my 5 +my gt myo+m331+mgqtmgotmast+magtmasg
+m1.31 + mg.3 =0

598 16,0 mi5.0 +m10 =1

So7 a15,30 m15,3 + mi12,2 + m10,2 T M8 3 + my,3 + my 2+ ms5 3+ my g+ m3a+ maa
+ma 3 +mgo+myo+mgy=0

596 15,25 m15,30 = 1

s95 214,26 mi4.31 =0

s94 14,25 mi4.30 = 1

$93 15,29 mi14,29 =0

s92 @15,28 mi14,28 + M9 28 + me,29 + m3.28 +m1.28 =0

s91 a15,27 mi14,27 + m12 .28 + Mg 27 + m7 29 + me. 28 + mg,28 + m3 27 + my1,27 =0

590 a15,26 miq,26 + m12,27 + m10,28 + M9, 28 + mg 26 + m7, 28 + me,27 + myg 28 + my 27
+m3 06 + mo og +my 06 = 1

89 a15,24 miq,24 +mi12,27 + mi12,25 + m11,28 + m10,27 + m10,26 + m9,26 + M9 24 + Mg 29
+m7,26 + me,20 + me,25 + M5 28 + M4 28 + M4, 26 + M4, 25 + ™3 28 + M3 24 + M2 26
+m1,24 + mo,28 =0

88 a15,23 miq,23 +mi12,26 + m12,24 + m11,27 + m10,26 + ™m10,25 + m9 28 + mg 25 + mg 23
+mg 28 + m7 25 + mg 28 + me 24 + M5 27 + My 27 + my 25 + My 24 + m3 28 + M3 27
+m3 .23 + m2 .25 + m1,28 +my,23 +mp,27 =1

s87 a15,22 mi14,22 +m13,20 + m12,25 + m12,24 + m12 23 + m11,28 + m11,23 + m11,21 + m10,27
+mg 26 + mg 24 + mg 23 + mg 29 + mg 27 + mg 26 + mg 25 + mg 22 + mg 20
+m7,26 + m7,25 + me,20 + mg,23 + me,22 + M5 28 + M5 25 + M5,21 + M4 28
+my4,26 + m4,25 + m4,23 + m3 28 + m3,24 + M3 21 + M2 26 + M2,20 + ™1,24
+mo,28 + mo,25 + mo.20 = 1

586 a15,21 miq,21 +mi12,27 + mi12,24 + m12 22 + mi1,25 + m10,28 + m10,27 + ™m10,24
+my0,23 + mg 28 + mg 26 + mg 23 + mg 21 + mg 29 + mg 26 + m7,29 + M7 28
+m7 23 + mg,20 + me,26 + m6,22 + Mm5,25 + M4 28 + M4 27 + M4 25 + M4 23
+my 00 + m3 296 + m3 25 + m3 21 + Mo 28 + mg 93 + m1 26 + m1 21 +mg,25 =0

s85 a15,20 mi14,20 +m12,26 + m12,23 + m12 21 + m11,28 + m11,24 + m10,28 + m10,27

+mi10,26 + m10,23 + m10,22 + M9, 27 + mg 25 + mg 22 + mg 20 + mg, 28 + mg 25

+m7 28 + m7 27 + m7 22 + mg 29 + me,28 + Mme,25 + me,21 + m5,24 + My 27 + My 26
+myg 24 + my 22 + my 21 +m3 28 + m3 25 + m3 24 + m3 20 + m2,27 + m2 22 +m1 25
+m1.90 + mg,28 + mo.24 + mgr 31 =1

Table 4: Control bit and controlled relations of 58-round SHA-1 (I)




Control Control Controlled relation r;
sequence bit
S b
S84 a15.5 mi4.5 + mg 5 +mes5 =1
583 a15,4 mig4,4 +mi2,5 +m11,3 +m11,2 +mio,4 +m10,3 +m10,2 + m10,1 + ™m9,2
+tmg,5 +m7.2+mg5 +mea+ msat+ms ot mygst+mgatmgotmss
+mg 4 +m30+ mgs+maog+mogo+mygl+moat+mg3z+moa=1
582 a14,30 mig4,3 +m11,3 +mi1,2 +mg 2+ my g+ mya+mry+mg2+ ms3
+my 0+ m33+mgo+myz+my3=0
581 15,2 miq,2 +mi25 +mi23 +mi0,4 +mg 2+ m7 g4+ me3+mys +myg
tmy3+mgaotmostmogt+mpo=1
$80 a15,1 miq,1 +m12,4 +mi11.2 +mi9,2 + mg 3+ mg 3+ my o+ mg2+ms 5+
mg o2 +my 4 +mg 31 +mg3 4+ mgao+mgq1+mag+ magz+mg3 =0
s79 14,27 mi4.0 =0
s78 13,26 m13,31 =0
s77 @13,25 m13.30 =0
S76 14,29 m13,29 + mg.29 =0
s75 14,28 ™m13,28 + mg 28 + m2 28 + mp,28 =0
S74 13,22 m13,27 + m11,28 + m8,29 + mg 27 + me,29 + m5.28 + M3 28 + ma 27 + mp.27 =1
s73 a13,21 m13,26 + m11,27 + mg, 28 + mg 28 + mg 26 + me,28 + m5 27 + m3 28 + m3 27
+m2,26 + m1,28 +mo.26 =1
s72 a14,24 m13,24 +mi12,28 + m11,27 + m11,25 + mi10,28 + mg 27 + mg 26 + mg,29 + Mg 26
+mg 24 + m7 29 + m7 28 + mg 26 + m5,25 + myg 28 + m3 28 + m3 26 + m3,25 + M2 28
+mo 24 +my .28 +m1,26 +mp24 =0
s71 a14,23 m13,23 + m12,27 + m11,26 + m11,24 + m10,28 + m10,27 + m9 26 + mg 25 + mg 29+
mg 28 + mg 25 + mg 23 + my 29 + m7 28 + my 27 + mg 25 + m5 28 + M5 24 + My 28
+my o7 + m3 07 + m3 05 + m3 04 + Mo 27 + M3 23 + M1 27 + M1 25 + Mmg,28 + mp,23 =0
S70 a14,22 m13,22 +m12,26 + m11,28 + m11,25 + m11,23 + m10,27 + m10,26 + Mg, 28 + Mg 25
+mg, 24 + mg 28 + mg 27 + mg 24 + mg 22 + m7 28 + M7 27 + M7 26 + M 20 + M6, 24
+ms5,28 + m5,27 + m5,23 + myg 27 + mg 26 + m3,28 + M3, 26 + M3 24 + M3 23 + M2 28
+ma 26 + m2 22 +m1 .26 + m1,24 +mp,28 +mp,27 + mp,22 =1
569 13,0 m13.6 =0
568 a145 mi3 5 + mizs * mp 5 +mas + mgp =0
seT a14,4 m13,4 + m12,5 + m11,2 + m10,4 + m7 4 + m5 4 + m5 3+ m5 2+ my 5+ myga+m331
+mg 5 +mo g+ mgo+myg=0
566 14,3 m13.3 + mg 3+ ms54+m34q4+mag+mge3=0
565 a13,28 mi3,2 + m10,3 + m10,2 + Mm10,1 + Mmg,2 + mg,2 + m7.4 + my7 o+ mgg+ mga+mg3
+mg o + mg 3+ mo o+ mq 31 +my 2+ mp3 =0
564 ai4,1 mi3.1 + m10,2 + mg,3 + mg,3 + m7 4 + my o+ mg 2+ ms 3+ ms 2+ mgo+ maga
+mg2 +ma3+ma2+mi31 +mg3=0
Control Control Controlled relation r;
sequence bit
sq b
$63 14,0 mi13.0+tmi131 =1
$62 212,26 mi2,31 =1
s61 213,30 | ™12,30 =0 Control | Control | Controlled relation 7;
$60 a12,24 mi2.29 =1 sequence bit
S59 a12.27 mi20 + M40+ m3,0 F mi31 +mio=0 55 b;
s58 11,26 mi11.31 =1 526 a8.0 mz.0+m3.0 =0
S57 12,30 mi11.30 =0 s25 a7,31 me.31 =0
556 11,24 mi1,29 =1 s24 a7,29 me,30 = 0
$55 @125 mi11.6 =1 s23 a3,26 ms5.31 +m3,31 =0
S54 11,0 mi1.6 =1 S22 5,25 m5.30 =1
$53 12,4 mi1,4 =1 s21 a6,29 ms5,29 = 1
s52 12,1 mi1,1 =1 $20 6,1 m5.1 =1
S51 12,0 mi11,0 +m1,31 =0 s19 a3,27 ms5.0 tm3o+mi31 =1
$50 210,26 m10,31 =0 s18 4,26 my4,31 =0
549 911,30 m10,30 = 0 s17 aq,25 mq,30 =0
548 210,24 mi10,29 =0 s16 a5,29 my4,29 =0
sa7 11,5 mi0,6 =0 $15 a5.,6 mgq.6 =0
546 @10.0 mi10,5 +ma5 + mas =0 S14 as5.1 mg1 =1
545 210,27 m10,0 +t mg0+m1,0=0 $13 a3,25 m3,30 =1
S44 9,26 mg9,31 + m3.31 +m30+tmio=1 S12 3,24 m3,29 =0
$43 a9,25 m9.30 =0 S11 a4.6 m3e =1
s42 210,30 mg9,30 =0 $10 a2,26 m2,31 =0
s41 9,24 mg.29 =1 s9 @225 m2.30 =1
540 9,0 mg.6 =0 S8 a2,24 m2,29 =0
S39 ay 8 mg g = 0 S7 a3 5 my g = 1
$38 10,5 mg9,5 + mg5 +me5 + m35 =0 56 22,6 m26 =1
s37 10,4 mg.4 =1 S5 a3.1 ma,1 =1
536 a9,28 mg,1 =1 sS4 a5 m1,5 =0
S35 9,27 mg9,0 + m3.0+m1,0=0 S3 @1,28 myg =1
534 a8,26 mg,31 =0 s2 a1,25 m1,30 =0
$33 a9,29 mg,30 = 1 S1 a1,24 mi,29 =1
s32 ag .28 mg.1 =0 S0 a1,23 my1,29 =1
$31 ag 27 mg.0 =0
530 28,31 m7,31 +m3.31 +m1.31 +m1.0=0
529 8,29 m7.30 =1
528 ag 4 m75 = 1
s27 a6.6 m7,5 =1

Table 5: Control bit and controlled relations of 58-round SHA-1 (IT)(III)(IV)




e 'r’ means to adjust a;; so that corre-
sponding controlled relation including
M (j+27 mod 32) as leading term holds.

)

e 'x’, 'yt adjust a;41,j—1, a5,;—1 so that
m; ; = 0, respectively.

e X’ Y. adjust a;q1,j—1, ;-1 so that
m; ; = 1, respectively.

e 'N’: semi-neutral bit.

) 7

e 'q’ : adjust a;; so that relations after
17-round hold.

In this case, the set of bits corresponding to
'q’ is exactly same to the set of adjusters.

By using our advanced sufficient conditions
on {a;;} and Algorithm 1 which is used as
Step 2 in Algorithm 2, we can adjust the value
of {mj ;}i=0,1,.- 15;j=0,1,-. 31 according to the
order defined as m}, ;, < m; ; if i <ior (i’ =
i and j/ < j). By the proposed method we
have succeeded in modifying message so that
all sufficient conditions on message {m; ;} and
some sufficient conditions on chaining variable
{a;j} of first 23 rounds. Still 34 conditions
remain as listed below: ai73 = 1,a172 =

0,a17,1 = 0,a26,1 = 1,a27,0 = 1,a29,1 = 0,a30,1 =
0,a33,1 = 1,a37,1 = 1,a39,1 = 0,a41,1 = 0,a43,1 =

0, a20,30 +a18,0 = 1,a21,30 +a20,0 = 0, a24,30 +
a220 = 0,a2530 + a2a0 = 1,a253 + a3z =
0,a26,2 + az52 = 1,a28,30 + az,0 = 0,a283 +
az73 = 1,a2930 + asg,0 = 1,a293 + azg 3z =
1,a32,3 +as13 = 1,a363 + ass3 = 1,a3s,3 +
az7r3 = l,a39,31 + ass1 = 1,a40,3 + azg 3z =
1,a40,31 +ass,1 = 1,a41,31 +a40,1 = 1, a42,31 +
as0,1 = 1,a4331 + as21 = 1l,a423 + as1,3 =
1,a44,31 + as21 = 1,a4531 + asq1 = 1.

Among the above conditions, there are five
conditions a17,3 = 1, a172 = 0, a17,1=0, 20,30+
a18,0 = 1, a21,30 + a20,0 = 0 which are related
to only first 23 rounds. The probability that
these five conditions are satisfied after the ba-
sic message modification (used in Step 2 of
Algorithm 2) is 1/25.

To adjust other 29 conditions, we use semi-
neutral bits as we described in Algorithm 2.

6.4 New Collisions

Using Algorithm 2 (essentially, using semi-
neutral bits showed in Table 6 to adjust the

above remaining 29 conditions), we found many

collisions of 58-round SHA-1 as follows. As we
show in Table 6, we have 21 semi-neutral bits
and 16 adusters.

Here we show some of new collisions we
found. They are new collisions different from
Wang’s result. For other examples of new col-
lisions, see [13].

m = 0xlead6636319 fe59edeaTddcbc7961642
0ad9523a f98 f28db0ad135d0e4d62aec
6¢2dab2c3c71600606ec74b2b02d545¢
bdd9e4663 f1563194 f497592dd1506 9

m' = 023ead6636519 feSac2ea7dd88e7961602
ead95278998 f28d98ad135d1edd62acc
6¢2dab2 f7¢7160e446ec74 f2502d540¢
1dd9e466b f 1563596 f497593 f d150699

m = 0216507a963dal8c5f4195d14bd55695¢a
0cb08092 £ 79649bb0717a22658¢119 f¢
5a36¢1 f8b960383b08929187ae9842 fa
b690d8710452419d585d012edca f0278

m' = 0236507a965dal8c6d2195d108 f55695aa
ecb080d0979649698717a22758¢119dc
5a36¢1 fb 9603869489291 74984248
1690d871845241dd785d012f fca f0218

6.5 Complexity

When we use the basic message modifica-
tion which we described in Algorithm 1, the
complexity to find a collision for 58-round SHA-
1 is 22 message modifications (equivalent to
231 SHA-1 computation experimentally) be-
cause there 29 remaining conditions after mes-
sage modifications, whereas Wang’s method
needs 234 message modifications and 23* SHA-
1 computation.

Now we consider the complexity when we
use the improved message modification pro-
posed as Algorithm 2. Since there are 5 re-
maining conditions which should be tested in
Step 3, the probability that the output of Step
2 pass the test of Step 3 is 1/2°. And since
there are 29 remaining conditions after Step
3 and we have 21 semi-neutral bits, the prob-
ability that the modified message in Step 4
pass the final test of Step 4 is 1/2%. Hence
when we use Algorithm 2, we have the com-
plexity to find a collision for 58-round SHA-
1 is 2% message modifications experimentally,
because Step 4 is a dominant part of the algo-
rithm. However, the real complexity to find a
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one improved message modification is 223 heav- Science Publishing House.
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Appendix: How to find good
message differential

As we stated in Section 2, a choice of “dif-
ferential without carry” is very important. Here
we show how to find good “differential with-
out carry” and good “message differential”

with low Hamming weight. 3 b -
Our strategy is as follows. 3H :
e Find a message differential in which dif- s
ference appears only on continuing 4- S
bits. There are a few message differen- = S
tial patterns which have values only on , e O Ell
3- or 4- bits. : T i
e Find another message-differentials of con- ] B
tinuing 4-bit by shifting the one obtained e S,
in the previous step. 3

e Substitute message-differentials into each 4t

round and combine them (adding a dis-
turbance vector) and obtain a ’better’

message differential.
Figure 1: Finding good disturbance vector (I)

If we start from Wang’s message-differential
with continuing 4-bit, we have the results as
in Fig. 1, Fig. 2. By our experiments, Wang’s
disturbance vector seems a best possible one.

ATm A" m i ATm A" m
20000000 0| 29 2 | 40000040
40000020 | 20000012 | 30 | 40000002 40
20000000 | 40000043 | 31 2 | 40000000
20000000 40 | 32 0 2
0000040 2 | 33 40 0

0 | 60000002 | 34 | 80000000 2
80000001 0 | 35 | 80000000 0

© OO Tk WN - O

0 20 | 36 0 | 80000002 o
3 0| 37 40 | 80000000 it
40000040 12 | 38 0 0 it
10 | 40000040 0 | 39 | 80000000 40 13-
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12 0 | a0000000 | 41 40
13 | 80000040 0| 42 80000000 g —
14 | 20000001 0| 43 40 e, T Spaime

- 100 440 100000 101540
= 33 1100 1100 300000 101540 22000

15 | 20000000 60 | 44 80000002
16 | 80000001 0| 45

0
17 | 40000002 40 | 46 80000000
18 0000002 41 | 47 | 8000000
19 | 40000000 22 | 48
20 0 3| 49
21 | 40000040 2 | 50
22 | 80000041 40000002 | 51
23 2 c0000020 | 52
24 1 0| 53
25 0 | 40000002 | 54
26 | 40000041 80000002 | 55
27 42 40000020 | 56
28 1 80000000 | 57
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Figure 2: Finding good disturbance vector

(IT)

Table. A message-differential of continuous 4-round



